2 resultados para Entomopathogenic fungus

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungi have been considered a potential source of natural anticancer drugs. However, studies on these organisms have mainly focused on compounds present in the sporocarp and mycelium. The aim of this study was to assess the anticancer potential of fungal spores using a bioassay-guided fractionation with cancer and normal cell lines. Crude extracts from spores of the basidiomycetous fungus Pisolithus tinctorius were prepared using five solvents/solvent mixtures in order to select the most effective crude extraction procedure. A dichloromethane/methanol (DCM/MeOH) mixture was found to produce the highest extraction yield, and this extract was fractionated into 11 fractions. Crude extracts and fractions were assayed for cytotoxicity in the human osteocarcinoma cell line MG63, the human breast carcinoma cell line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain capillary endothelial cell line hCMEC/D3. Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. The results showed a reduction in cancer cell viability of approximately 95% with 4 of 11 fractions without a significant reduction in viability of hCMEC/D3 cells. Data demonstrated that spores of P. tinctorius might serve as an interesting source of compounds with potential anticancer properties.